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An inverse dynamics control algorithm for constrained #exible-joint robots is
developed. It is shown that in a #exible-joint robot, the acceleration level inverse
dynamic equations are singular because of the elastic media. Implicit numerical
integration methods that account for the higher order derivative information are
utilized for solving the singular set of di!erential equations. The control law
proposed linearizes and decouples the system and achieves simultaneous and
asymptotically stable trajectory tracking control of the end-e!ector motion and
contact forces. Together with the integrators for improving robustness due to
modelling errors and disturbances, a "fth order position error dynamics and a third
order contact force error dynamics are obtained. A 3R spatial robot with all joints
#exible is simulated to illustrate the performance of the method.

( 1999 Academic Press
1. INTRODUCTION

In many applications of industrial robots such as assembling, scraping, grinding
and deburring, the end-e!ector contacts a surface and the control of contact forces
and torques in certain directions of the task space is necessary. To successfully
accomplish such constrained maneouvres the contact forces and the motion along
the constraint surfaces should be controlled simultaneously.

The hybrid force and position control schemes based on rigid models are limited
in their applicability due to the #exibilities in the robot structure. It has been
experimentally shown that for a variety of robots, joint #exibility is the principal
source contributing to overall robot #exibility [1]. Sources of joint #exibility
include harmonic drives, couplings, belt drives and shafts. As the joint #exibility
can cause instability of robot control, especially for force-controlled robots, it
should be included in the controller design [2].

Among the motion control methods for #exible-joint robots, an inverse
dynamics approach yields linear subsystems for each degree of freedom [3}6].
A singular perturbation approach considers a reduced order model by
decomposing the system into slow and fast subsystems [7, 8]. Adaptive control
strategies have also been developed based on reduced order models to compensate
for parametric and dynamic uncertainties [9, 10].
22-460X/99/300879#17 $30.00/0 ( 1999 Academic Press



880 S. K. IDER
Only a few studies have dealt with the hybrid force and motion control problem
of #exible-joint robots. Jankowski and Elmaraghy [11] presented an analytical
inverse dynamics control scheme. Here the input}output relation is found
analytically by eliminating the intermediate variables. This elimination requires the
di!erentiation of the equations of motion and the acceleration level constraint and
task equations twice. The resulting complexity of the control law yields this
approach unsuitable for real-time implementation especially for robots with three
or more joints. Hu and Goldenberg [12] developed a procedure for the hybrid
motion and force control of co-ordinated robot arms in the presence of joint
#exibility. The model order is reduced by decomposing the system into two
subsystems. First, motion and force controllers are designed to generate the desired
joint elastic force. Then a joint elastic force controller is used to regulate the joint
elastic force. However, this approach is limited in applicability since it is based on
the assumption that the joint springs are su$ciently sti! so that the #exible joint
dynamics is much faster than the manipulator dynamics.

The aim of this study is to develop a control law for hybrid force and motion
trajectory tracking control of #exible-joint robots which avoids the drawbacks of the
existing algorithms. It is shown that the inverse dynamic equations of the system
form a singular set of di!erential equations. This is because the control forces cannot
a!ect the task accelerations and contact forces instantaneously due to the elastic
media, resulting in the inverse dynamic problem being time anticipatory [13]. The
higher order derivative information is taken into account by utilizing methods for
solving singular sets of di!erential equations, thus avoiding further di!erentiation of
the dynamic equations. The control law developed achieves simultaneous and
asymptotically stable end-e!ector position and contact force control by feedback of
joint positions, joint velocities and rotor velocities. The desired motion and force
trajectories are allowed to involve initial and intermediate discontinuities in all their
states. For illustration, a 3R spatial robot subject to discontinuous motion and force
trajectories is simulated in the presence of modelling error.

2. DYNAMIC MODEL

A #exible joint robot is modelled as n links and n actuator rotors connected by
elastic transmissions with speed reduction. It is assumed that the rotor mass
distribution about its axis of rotation is symmetric, and the rotational kinetic
energy of the rotor is mainly due to its own rotation [3, 11, 12]. Let h

i
, i"1,2, n,

denote the joint co-ordinates and t
i
, i"1,2, n, the rotor angles divided by the

gear ratio r
i
. The system has 2n degrees of freedom while only n control actuator

torques ¹
i
, i"1,2, n, are available. The elasticity of the transmission at the ith

joint is modelled as a torsional spring with sti!ness k
i
. Structural damping which is

inherent in structural members used in drive trains is considered as a structural
damping coe$cient d

i
, i"1,2, n. With the assumptions stated above, the inertia

and gravitational coupling terms between the joint and rotor variables disappear
yielding the following dynamic equations:

M(h)hG#Q(h, h0 )#D(h0 !w0 )#K(h!w)#F#"0, (1)

I3wG#D3w0 !D(h0 !w0 )!K(h!w)"T, (2)
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where M(h) is the symmetric positive-de"nite inertia matrix corresponding to the
joint degrees of freedom, Q(h, h0 ) is the vector of centrifugal, Coriolis and
gravitational forces, F# is the vector of generalized contact forces, K"diag [k

i
],

D"diag [d
i
], I3"diag [r2

i
I3
i
], where I3

i
is the moment of inertia of the ith rotor

about its rotation axis, and D3"diag [r2
i
D3

i
], where D3

i
is the viscous damping

coe$cient of the ith rotor. M and Q are same as those for the n-link rigid robot
where the rotor masses (as point masses) are included as part of the corresponding
links.

The prescribed end-e!ector contact forces and the prescribed end-e!ector
trajectories along the constraint surfaces represent the tasks of the manipulator. Let
the dimension of the task space be n, and let x

i
, i"1,2, n, denote the Cartesian

end-e!ector position and orientation co-ordinates which can be expressed as
x"/(h). The joint and task space velocity relation is x5 "J(h)h0 , where J is the
manipulator Jacobian matrix. It is assumed that the singular positions are out of
the operation range so that J never becomes singular.

The contact of the end-e!ector with the environment can be described by
constraint equations

g
i
(x, t)"0, i"1,2, m. (3a)

Di!erentiating equation (3a) and writing x and x5 in terms of h and h0 , the following
velocity relation is obtained:

E
ij
(h , t)h0

j
#G

i
(h, t)"0, i"1,2, m. (3b)

The generalized contact forces are

F#"ETk, (4)

where k is the vector of Lagrange multipliers that represent the contact forces and
moments, which are perpendicular to the constraint surfaces.

Let y
i
, i"1,2, n!m represent the independent co-ordinates of the end-e!ector

along the constraint surfaces, which can be expressed as

y
i
"h

i
(x, t) . (5a)

This leads to the following velocity relation:

yR
i
"P

ij
(h, t)h0

j
#H

i
(h, t), i"1,2, n!m. (5b)

Using equations (3b) and (5b), and denoting

C
E
PD

~1
"[g l],
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where n]m matrix g and the n](n!m) matrix l are functions of positions only,
h0 is expressed in terms of y5 as

h0 "ly5 !(gG#lH). (6)

When the intermediate variables w and h are eliminated in the dynamic equations,
the relation between the input T and the outputs y and k can be obtained as

(I3K~1Ml)(4)y #(I3K~1ET)kG #A(y5 5 5 , yK , y5 ) y ) k0 , k)"T#(K~1D)T0 , (7)

where

A"K~1MI3 [M(3l5 y5 5 5#3l0 0 y0 0 #l5 5 5y5 !(g5 5 5G#3gK G0 #3g5 GG #gG0 0 0 #l5 5 5H#3lK H0 #3l5 HG

#lH0 0 0 )#2M0 h0 0 0#MG hG#QG #Dh0 0 0#KhG#EG Tk#2E0 Tk0 )]#D3(DhG#Kh0 )

#(D#D3) (Mh0 0 0#M0 hG#Q0 #E0 Tk#ETk0 )N#MhG#Q#ETk (8)

and h, h0 , hG and h0 0 0 can be written in terms of y, y5 , yK and y5 5 5 using equation (6), its
derivatives, and equations (3a) and (5a). An inverse dynamics control law can be
formulated using equation (7). Specifying (4)y and kG according to their desired values
and the errors in their states, one can calculate T#(K~1D)T0 from equation (7), and
numerical integration can be used for "nding the corresponding control torque
vector T. However, this requires M0 , MG , Q0 , QG , and the second and third derivatives
of l, g, G and H. The resulting expressions become extremely long and complex
especially for n*3, yielding this approach impractical for real-time applications.

3. INVERSE DYNAMICS CONTROL USING SINGULAR ACCELERATION
LEVEL EQUATIONS

To formulate an inverse dynamics control law, the dynamic equations will be
utilized at the acceleration level to "nd the input torques required to achieve the
desired end-e!ector motion and contact forces. To this end, equations (1) and (2)
and the time derivatives of equations (3b) and (5b) can be written in augmented
from as shown below, where yK and k are replaced by control variables z and C that
represent &&command accelerations'' and &&command contact forces'', respectively,

M 0 0

0 I3 !I

E 0 0

P 0 0

hG

wG

T

"

!Q!D(h0 !w0 )!K (h!w)!ETC

!D3w0 #D(h0 !w0 )#K(h!w)

!E0 h0 !G0

!P0 h0 !H0 #z

. (9)

It is seen from equation (7) that, in the forward dynamics, a torque vector
T instantaneously a!ects the end-e!ector jerk rate (4)y and the contact force second
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derivative kG . Hence, in the control law the &&command jerk rates'' zK and the
&&command contact force second derivatives'' CG need to be speci"ed. Using
the desired jerk rates, the desired contact force second derivatives, and the errors in
the end-e!ector motion and force states, zK and CG can be formulated as

zK"(4)$y #C
1
(y5 5 5$!y5 5 5)#C

2
(yK $!yK )#C

3
(y5 $!y5 )#C

4
(y$!y)#C

5P (y$!y) dt

(10)

and

CG"kG $#B
1
(k0 $!k0 )#B

2
(k$!k)#B

3P (k$!k) dt, (11)

where superscript d denotes desired values, and C
i
, i"1,2, 5 and B

i
, i"1, 2, 3 are

constant feedback gain diagonal matrices, i.e., C
i
"diag [C

ij
], j"1,2, n!m and

B
i
"diag [B

ij
], j"1,2, m. The integral terms in equations (10) and (11) are

included for improving robustness to model errors and disturbances.
To show that the application of the control torque vector T as obtained from the

solution of equation (9) linearizes the decouples the system, consider the fact that, in
the absence of modelling error and disturbances, the actual accelerations and
contact forces produced by the control torques are equal to z and C, respectively,
i.e., yK"z and k"C. Using equations (10) and (11), this leads to the following error
dynamics:

(4)e
1
#C

1
e5 5 5
1
#C

2
eK
1
#C

3
e5
1
#C

4
e
1
#C

5 Pe
1
dt"0 (12)

and

eK
&
#B

1
e5
&
#B

2
e
&
#B

3P e
&
dt"0, (13)

where e
1
"y$!y and e

&
"k$!k. Asymptotic stability is achieved by appropriate

choice of the feedback gains C
ij

and B
ij
. Norms such as ITAE, IAE, etc. can be used

for this purpose.
However, the solution of equation (9) for the control torque vector T is not

a straightforward task, since the acceleration and torque coe$cient matrix is
singular.

In fact, in the inverse dynamics problem, the "rst, third and fourth rows of
equation (9) involve only the kinematic variables, and will be termed as the inverse
kinematic equations. On the other hand, the second row of equation (9) is used for
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"nding the corresponding control torques. The inverse kinematic equations can be
expressed as

M 0

E 0

P 0

hG

wG
"

!Q!D(h0 !w0 )!K(h!w)!ETC

!E0 h0 !G0

!P0 h0 !H0 #z

. (14)

However, equation (14) cannot be solved in this form because it represents
a singular set of di!erential equations. The physical reason for the singularity is
that, because the control torques are transmitted to the end-e!ector through the
elastic joints, the control torques do not have an instantaneous e!ect on the
end-e!ector accelerations and contact forces. This means that the inverse dynamics
problem is time-anticipatory.

Since the acceleration coe$cient matrix in equation (14) cannot be inverted to
obtain an explicit system of ordinary di!erential equations, implicit numerical
integration methods need to be used [14]. Here the backward Euler method will be
utilized. This is the simplest implicit integration method where the numerical
integration is based on the following backward di!erence formula:

s5
k`1

"

1
h

(s
k`1

!s
k
), (15)

where h is the sampling time interval and k is the time step number. Using equation
(15), equation (9) can be written at time t

k`1
as

M 1
h
(h0

k`1
!h0

k
)#Q#D(h0

k`1
!w0

k`1
)#K(hh0

k`1
#h

k
!hw0

k`1
!w

k
)#ETC

k`1
"0,

(16)

I3 1
h
(w0

k`1
!w0

k
)#D3w0

k`1
!D(h0

k`1
!w0

k`1
)!K (hh0

k`1
#h

k
!hw0

k`1
!w

k
)"T

k`1
,

(17)

E1
h
(h0

k`1
!h0

k
)#E0 h0

k`1
#G0 "0, (18)

P1
h
(h0

k`1
!h0

k
)#P0 h0

k`1
#H0 "z

k`1
, (19)

where M(hh0
k`1

#h
k
), Q (hh0

k`1
#h

k
, h0

k`1
), E(hh0

k`1
#h

k
,t), E0 (hh0

k`1
#h

k
, h0

k`1
, t ),

P(hh0
k`1

#h
k
,t), P0 (hh0

k`1
#h

k
, h0

k`1
, t), G0 (hh0

k`1
#h

k
, h0

k`1
, t) and H0 (hh0

k`1
#h

k
,

h0
k`1

, t), also depend on h0
k`1

. Equations (16)}(19) represent a set of 3n algebraic
equations from which the 3n unknowns h0

k`1
, w0

k`1
and T

k`1
can be solved, as

described below.
At this point it is necessary to determine the command contact forces C

k`1
and

the command accelerations z
k`1

. Usually, the desired motion and force trajectories
are speci"ed as piecewise smooth functions. Let y$(t) be smooth up to the third
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derivative in the time interval t
a
)t(t

b
. Then integration of equation (10) twice at

this interval leads to

z"z
a
#z5

a
(t!t

a
)#y0 0 $!y0 0 $

a
!y5 5 5$

a
(t!t

!
)#C

1
[(y5 $!y5 )!(y5 $

a
!y5

a
)

!(y0 0 $
a
!y0 0

a
) (t!t

a
)]#C

2
[(y$!y)!(y$

a
!y

a
)!(y5 $

a
!y5

a
) (t!t

a
)]

!C
3
(y$

a
!y

a
) (t!t

a
)#C

3 P
t

ta

w5 5 5 (q) dq#C
4P

t

ta
CP

q

ta

w5 5 5 (s) dsD dq

#C
5 P

t

ta
GP

q

ta
CP

s

ta

w5 5 5 (u) duDdsH dq, t
a
)t(t

b
, (20)

where w5 5 5"y$!y. Evaluation of equation (20) at time t
k`1

, where for y, y$ and their
derivatives the values at time t

k
are used because of discretization, yields z

k`1
as

z
k`1

"z
a
#z5

a
(t
k`1

!t
a
)#y0 0 $

k
!y0 0 $

a
!y5 5 5$

a
(t
k`1

!t
!
)#C

1
[(y5 $

k
!y5

k
)!(y5 $

a
!y5

a
)

!(yK $
a
!yK

a
) (t

k`1
!t

a
)]#C

2
[(y$

k
!y

k
)!(y$

a
!y

a
)!(y5 $

a
!y5

a
) (t

k`1
!t

a
)]

!C
3
(y$

a
!y

a
) (t

k`1
!t

a
)#C

3
(hw5 5 5

k`1
#wK

k
)#C

4
(h2w5 5 5

k`1
#hwK

k
#w5

k
)

#C
5
(h3w5 5 5

k`1
#h2wK

k
#hw5

k
#w

k
) , t

a
)t

k
(t

b
, (21)

where w5 5 5
k`1

"y$
k
!y

k
.

Integration of equation (11) twice in the interval t
a
)t(t

b
yields

C"C
a
#C0

a
(t!t

a
)#k$!k$

a
!k0 $

a
(t!t

a
)!B

1
(k$

a
!k

a
) (t!t

a
)

#B
1P

t

ta

p5 5 5(q) dq#B
2P

t

ta
CP

q

ta

p5 5 5 (s) dsD dq#B
3P

t

ta
GP

q

ta
CP

s

ta

p5 5 5 (u) duD dsH dq,

t
a
)t(t

b
, (22)

where p5 5 5"k$!k. Then C
k`1

is similarly obtained as

C
k`1

"C
a
#C0

a
(t
k`1

!t
a
)#k$

k
!k$

a
!k0 $

a
(t
k`1

!t
a
)!B

1
(k$

a
!k

a
) (t

k`1
!t

a
)

#B
1
(hp5 5 5

k`1
#pK

k
)#B

2
(h2p5 5 5

k`1
#hpK

k
#p5

k
)

#B
3
(h3p5 5 5

k`1
#h2pK

k
#hp5

k
#p

k
), (23)

where p5 5 5
k`1

"kd
k
!k

k
.

It is important to note that, because the control torques cannot a!ect the end-
e!ector accelerations, contact forces and their "rst time derivatives instantaneously,
a step change in z, z5 , C or C0 require in"nitely large control torques. This condition is
avoided by choosing the integration constants such that z, z5 , C or C0 are matched at
the discontinuities of the desired motions. This is achieved by setting z

a
"z(t`

a
)"

z(t~
a

), z5
a
"z5 (t`

a
)"z5 (t~

a
), C

a
"C(t`

a
)"C(t~

a
) and C0

a
"C0 (t`

a
)"C0 (t~

a
).
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In a singular set of di!erential equations (which are termed di!erential/algebraic
equations in state variable representation) the initial conditions are not
independent [14]. The relations that the initial conditions should satisfy can be
found by using equation (14). To this end, the second and third rows of equation
(14) are written as

RhG"S, (24)

where

R"C
E
PD and S"C

!E0 h0 !G0
!P0 h0 !H0 #zD .

Premultiplying equation (24) by MR~1 and subtracting the resulting equation from
the "rst row of equation (14), one obtains

MR~1S#Q#D(h0 !w0 )#K(h!w)#ETC"0. (25)

For the calculation of the control torques T
k`1

from equations (16)} (19), the
initial values h

k
, h0

k
, w

k
and w0

k
are needed. If h

k
, h0

k
, w

k
and w0

k
are measured at time

t
k
, then they will not satisfy equation (25) in the presence of modelling error and

disturbance. This inconsistency causes the control torques T
k`1

to be incorrect. In
fact as hP0, they diverge. Either of the intermediate variables w

k
or w0

k
can be

solved from equation (25) in order to achieve the consistency. Choosing w
k
for this

purpose, it can be calculated from equation (25) at time t
k

as

w
k
"h

k
#K~1xMR~1S#Q#D (h0

k
!w0

k
)#ETC

k
y , (26)

where h
k
, h0

k
and w0

k
are the measured quantities,

S"C
!E0 h0

k
!G0

!P0 h0
k
!H0 #z

k
D

and M, Q, E, P, E0 , G0 , P0 and H0 are calculated using h
k
and h0

k
.

The calculation of the control torques that linearize and decouple the system can
be done in the following order.

Equations (18) and (19) represent n non-linear algebraic equations from which
h0
k`1

can be solved. z
k`1

in equation (19) is given by equation (21) where y
k

and
y5
k
are calculated from the measured h

k
and h0

k
using equations (5a, b).

Then equation (16) is used for "nding w0
k`1

as

w0
k`1

"(Kh#D)~1 [M1
h
(h0

k`1
!h0

k
)#Q#ETC

k`1
#K(h

k
!w

k
)]#h0

k`1
, (27)

where C
k`1

is given by equation (23). The contact force vector k
k
, that appears in

equation (23), can be obtained by measurement. In general, feedback of the
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measured force allows the local compensation for a mismatch between the
modelled and the real systems. However, to avoid the di$culty of the contact force
measurements, k

k
can be solved utilizing the constraint surface equation. To this

end, substitution of hG obtained from equation (1) into the derivative of equation (3b)
at time t

k
yields

k
k
"!(EM~1ET)~1 MEM~1[Q#D (h0

k
!w0

k
)#K(h

k
!w

k
)]#E0 h0

k
#G0 N, (28)

where M, Q, E, E0 , and G0 are calculated using h
k

and h0
k
.

Finally, the control torques T
k`1

are computed from equation (17).

4. NUMERICAL EXAMPLE

The 3R spatial manipulator shown in Figure 1 represents one of the most
common arm con"gurations used in industry. All three joints are assumed to be
#exible. The weights act in the !y direction. Initially, the system is at rest and the
end point A is located at x

10
"0)3170m, x

20
"0)6160 m and x

30
"0)1830 m that

corresponds to h
1
"!303, h

2
"1203 and h

3
"!1503. Point A is required to

exert a speci"ed normal force pro"le composed of a cycloidal rise, constant level
and a cycloidal return, on the plane surface x"x

10
, while at the same time make

a cycloidal deployment motion on that surface. The desired motion and force
trajectories are given as

x$
2
"G

0)66 m, 0)t(¹
1
,

0)66#
0)5
¹ Ct!¹

1
!

¹

2n
sin

2n(t!¹
1
)

¹ Dm, ¹
1
)t(¹

1
#¹,

1)16m, t*¹
1
#¹,
Figure 1. 3R spatial robot.



x$
3
"G

0)22 m, 0)t(¹
1
,

0)22!
0)5
¹ Ct!¹

1
!

¹

2n
sin

2n(t!¹
1
)

¹ D m, ¹
1
)t(¹

1
#¹,

!0.28 m, t*¹
1
#¹,

j$"G
50
¹
1 At!

¹
1

2n
sin

2nt
¹
1 BN, 0)t(¹

1
,

50N, ¹
1
)t(¹

1
#¹,

50!
50
¹
2 Ct!¹

1
!¹!

¹
2

2n
sin

2n (t!¹
1
!¹)

¹
2 D N, ¹

1
#¹)t(¹

1
#¹#¹

2
,

0, t*¹
1
#¹#¹

2
,

where x
1
, x

2
, x

3
are the x, y, z co-ordinates of point A. The contact force increase

period ¹
1
, the deployment motion period ¹, and the contact force decrease period

¹
2

are ¹
1
"¹

2
"0)05 s and ¹"0)5 s. Notice that there is an initial step change in

the desired position. At the boundaries of the cycloidal trajectories the jerks are
discontinuous.

The link dimensions are OB"0)25 m, BC"CA"1 m. The links are assumed
to be uniform. The masses of the links are mL

1
"18 kg, mL

2
"8)6 kg, mL

3
"4)3 kg.

The motors are assumed to be connected to the joints through harmonic drive
transmission, hence are located at the joints. The motors and gear boxes have small
dimensions compared to the links. The combined motor and gear box masses are
mM

2
"0)4 kg and mM

3
"0)2 kg. The joint torsional sti!ness constants are

k
1
"k

2
"k

3
"5000 N m/rad. Damping is neglected. The rotor moments of inertia

are I3
1
"4)0]10~5 kg m2, I3

2
"5)0]10~5 kg m2, I 3

3
"2)3]10~5 kg m2. The gear

ratios are r
1
"r

2
"r

3
"100.

In this example n"3, m"1 and equation (3a) becomes g(x, t)"x
1
!x

10
"0.

Hence in equation (3b) E is the "rst row of the manipulator Jacobian J, and G is
zero. The independent co-ordinates along the constraint surface, de"ned in
equation (5a), become y

1
"x

2
and y

2
"x

3
. Hence P in equation (5b) is formed as

P
1j
"J

2j
, P

2j
"J

3j
, j"1, 2, 3, and H is a zero vector.

The control simulations are made by "nding the control torques at each
sampling time step as described in section 3. For the solution of the non-linear
algebraic equation system given by equations (18) and (19), fuctional iteration is
used. Equations (18) and (19) are written as

h0
k`1

"C
E1

h
#E0

P1
h
#P0 D

~1

C
E1

h
h0
k
!G0

P1
h
h0
k
!H0 #z

k`1D . (29)

Starting with h0
k
for h0

k`1
in the right-hand side, equation (29) is solved for new h0

k`1
.

Iteration continues until the norm of the di!erence in h0
k`1

between successive
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iterations is less than a small number e. It has been observed by the numerical
simulations that for e"10~10, at most three iterations were su$cient.

The control torques are then applied to the actual system which can be expressed
using equations (1) and (2) and the derivative of equation (3b), as

M 0 ET

0 I3 0

E 0 0

hG

wG

k

"

!Q!D(h0 !w0 )!K(h!w )

T!D3w0 #D(h0 !w0 )#K(h!w)

!E0 h0 !G0

. (30)

hG , wG and k are solved from equation (30) and hG and wG are numerically integrated
using a predictor-corrector algorithm to yield the joint and rotor position and
velocity responses.

First, it is assumed that there is no modelling error and the control system is
simulated without the integral terms in the command jerk rates and the command
contact force second derivatives, i.e., C

5
"0, B

3
"0. ITAE performance criteria are

used, where C
1i
"2)1a

i
, C

2i
"3)4a2

i
, C

3i
"2)7a3

i
, C

4i
"a4

i
, i"1, 2; B

1
"1.4b,

B
2
"b2. In the simulations a

i
"50 rad/s, i"1, 2; b"600 rad/s, Figures 2 and 3
Figure 2. Position response without integral control: 1. y
1
, 2. y

2
, 22 Response; - - - Desired.



Figure 3. Contact force response without integral control: j. *} Response; - - - Desired.

890 S. K. IDER
show that good tracking properties are achieved in both the motion and contact
force.

To see the e!ects of modelling error, the robot inertia parameters and the
torsional spring constants are assumed to be 20% larger in the model. When
the control simulations are made using the above feedback gains, the position
and contact force responses are obtained as shown in Figures 4 and 5, respec-
tively. The tracking and steady-state errors are considerably large. The control
torques are depicted in Figure 6. The errors can be reduced by increasing a

i
and b.

However, this produces larger control torques and necessitates smaller sampling
times.

Then the integral terms in the control law are also included for improving
robustness to modelling error. ITAE criteria, i.e., C

1i
"2)8a

i
, C

2i
"5)0a2

i
,

C
3i
"5)5a3

i
, C

4i
"3)4a4

i
, C

5i
"a5

i
, i"1, 2; B

1
"1)75b, B

2
"2)15b2, B

3
"b3, and

the same a
i
and b are used. Figures 7 and 8 show the position and contact force

responses. The tracking and steady-state errors are reduced to negligible levels. The
control torques are plotted in Figure 9. The "nal spring de#ections (h

i
!t

i
) are 0,

0)363 and !0)513 respectively.
In the simulations a sampling time interval of 0)001 s is used (sampling

freq."6284 rad/s). As long as the sampling frequency is chosen to be not less than
about ten times the largest of the closed-loop natural frequencies, the algorithm is
not sensitive to the size of the time step. The controller bandwidth can be increased
if a higher sampling frequency is used.



Figure 4. Position response without integral control (model error): 1. y
1
, 2. y

2
,2}Response; - - - Desired.

Figure 5. Contact force response without integral control (model error): j.*}Response; - - - Desired.
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Figure 6. Control torques without integral control (model error): 1. ¹
1
, 2. ¹

2
, 3. ¹

3
.
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5. CONCLUSIONS

This paper has presented a hybrid force and motion trajectory tracking control
law for #exible-joint robots based on solving the acceleration level inverse dynamic
equations which are singular. The implicit numerical integration procedure
accounts for the higher order derivative information. By the proposed method
further di!erentiations of the equations of motion and the constraint and task
equations are avoided. Since inconsistent initial values at a sampling time cause the
control torques to be incorrect, the relations that the initial values should satisfy are
taken into consideration. When the rotor positions are chosen to achieve the
consistency, the required measurements are the joint positions, joint velocities and
rotor velocities. Since the constraint surface equation is given, the contact forces are
found by appropriate calculations.

One of the critical points in the algorithm is that since the control forces cannot
make an instantaneous e!ect on the end-e!ector contact forces, contact force rates,
end-e!ector accelerations and end-e!ector jerks, step changes in C, C0 , z and z5 ,
require in"nitely large control torques. For obtaining continuous C, C0 , z and z5 they



Figure 7. Position response (model error): 1. y
1
, 2. y

2
, 2} Response; - - - Desired.

Figure 8. Contact force response (model error), j. *} Response; - - - Desired.
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Figure 9. Control torques (model error): 1. ¹
1
, 2. ¹

2
, 3. ¹

3
.
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are matched at the discontinuities of the reference trajectories by freely selecting the
integration constants accordingly. Hence, initial and intermediate jumps in all
states of the desired force and motion trajectories are allowed.
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